

Date d'édition: 04.11.2025

Ref: EWTGUHM150.10

HM 150.10 Visualisation de lignes de courant

Analyse de modèles dans un écoulement laminaire et bi-dimensionnel; avec encre pour visualisation

Lécoulement laminaire bidimensionnel de HM 150.10 donne une bonne approche de lécoulement de fluides idéaux ou écoulement potentiel.

Avec le HM 150.10, on visualise les champs de lignes de courant au niveau de lécoulement autour de corps de résistance.

On visualise aussi lécoulement traversant des modifications de section.

Les lignes de courant apparaissent en couleur grâce à linjection préalable dun produit de contraste (encre).

Les sources et les puits sont créés par lintermédiaire de quatre raccords deau se trouvant dans la plaque inférieure.

Les lignes de courant au niveau de lécoulement autour ou de lécoulement traversant sont bien visibles au travers de la plaque en verre.

Le débit deau et la quantité de produit de contraste injectée sont ajustés à laide de soupapes.

Les raccords deau sont également activés par des soupapes et peuvent être associés de la manière souhaitée.

Il est possible de découper ses propres modèles dans une plaque de caoutchouc comprise dans la liste de livraison. Lappareil dessai est positionné aisément et en toute sécurité, sur le plan de travail du module de base HM 150. Lalimentation en eau se fait au moyen du HM 150. Lappareil dessai peut être également utilisé sur le réseau du laboratoire.

Pour analyser virtuellement le comportement de lécoulement, on utilise souvent dans la pratique des simulations CFD.

Elles permettent par exemple de visualiser lécoulement dans des zones qui ne peuvent pas être visualisées via lessai.

Dans le GUNT Media Center, des visualisations découlement basées sur des calculs CFD sont disponibles en ligne.

Des matériels didactiques multimédias sont également disponibles, y compris un cours dapprentissage en ligne sur la connaissance de base et des calculs.

Des vidéos présentent un essai complet avec la préparation, lexécution et lévaluation.

Des feuilles de travail accompagnées des solutions complètent le matériel didactique.

Contenu didactique / Essais

- visualisation des lignes de courant dans différents cas:

écoulement autour de corps de résistance

écoulement traversant des modifications de section

- influence des sources et des puits

GUNT Media Center, développement des compétences numériques

- cours dapprentissage en ligne avec connaissances de base et calculs
- simulations CFD préparées pour la visualisation de lécoulement
- vidéos avec présentation détaillée des essais: préparation, exécution, évaluation

GSDE s.a.r.l.

Date d'édition: 04.11.2025

- succès dapprentissage assuré grâce aux feuilles de travail numériques
- acquisition dinformations sur des réseaux numériques

Les grandes lignes

- visualisation de lignes de courant avec de lencre utilisée comme produit de contraste
- différents modèles sont compris dans la liste de livraison: corps de résistance et modifications de section
- sources et puits seuls ou en association
- visualisation de lécoulement à laide de la technique CFD
- matériel didactique multimédia en ligne dans le GUNT Media Center: cours dapprentissage en ligne, simulations CFD préparées, feuilles de travail, vidéos

Les caractéristiques techniques

La chambre d'écoulement comprend 2 plaques

- écart entre les plaques: 2mm
- plaque en verre supérieure
- plaque inférieure avec 4 raccords deau pour les sources/puits
- taille de la zone dessai Lxl: 400x280mm

pour les sources/puits

- taille de la zone d'essai Lxl: 400x280mm

10 corps de résistance et modifications de section Plaque de caoutchouc pour fabriquer ses modèles

- Lxh 300x400mm
- épaisseur: 2mm

Injection du produit de contraste (encre)

- 15 orifices

Réservoir pour produit de contraste: 500mL

Dimensions et poids Lxlxh: 640x520x520mm

Poids: env. 24kg

Nécessaire au fonctionnement

HM 150 (cir

Catégories / Arborescence

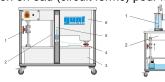
Techniques > Mécanique des fluides > Principe de la dynamique des fluides > Écoulements autour de corps Techniques > Mécanique des fluides > Principe de la dynamique des fluides > Hydrodynamique

HAMBURG

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 04.11.2025

Options


Date d'édition: 04.11.2025

Ref: EWTGUHM150

HM 150 Module de base pour essais de mécanique des fluides (Réf. 070.15000)

Support et alimentation en eau (circuit fermé) pour module HM150.XX, mesure de débit volumétriques

La série d'appareils HM 150 délivre un grand aperçu des essais expérimentaux élémentaires pouvant être réalisés en mécanique des fluides.

Pour les besoins individuels, le module de base HM 150 fournit l'essentiel: l'alimentation en eau dans un circuit fermé; la détermination du débit volumétrique, ainsi que le positionnement de l'appareil sur le plan de travail du module de base et la collecte de l'eau d'égouttement.

Le circuit d'eau fermé est constitué d'un réservoir de stockage sous-jacent équipé d'une pompe submersible puissante et d'un réservoir de mesure placé au-dessus et destiné à collecter l'eau en sortie.

Le réservoir de mesure a plusieurs niveaux, adaptés aux petits et grands débits volumétriques.

Pour les très petits débits volumétriques, on utilise un bécher de mesure.

Les débits volumétriques sont déterminés à l'aide d'un chronographe.

Le plan de travail placé en haut permet de bien positionner les différents appareils.

Un canal d'essais est intégré au plan de travail. Il est prévu pour les essais réalisés avec des déversoirs (HM 150.03).

Les grandes lignes

- Alimentation en eau des appareils d'essai utilisés en mécanique des fluides
- Mesure du débit volumétrique pour de grands et petits débits
- Les nombreux accessoires permettent de réaliser un cours de formation élémentaire complet en mécanique des fluides

Les caracteristiques techniques

Pompe

- puissance absorbée: 250W

débit de refoulement max.: 150L/minhauteur de refoulement max.: 7,6m

Réservoir de stockage, contenu: 180L

Réservoir de mesure

pour grands débits volumétriques: 40Lpour petits débits volumétriques: 10L

Canal

- Lxlxh: 530x150x180mm

Bécher de mesure gradué pour les très petits débits volumétriques

- contenu: 2L

Chronographe

- plage de mesure: 0...9h 59min 59sec

Dimensions et poids Lxlxh: 1230x770x1070mm

Poids: env. 85kg

Necessaire au fonctionnement

Date d'édition: 04.11.2025

230V, 50/60Hz

Liste de livraison

1 module de base

1 chronomètre

1 gobelet gradué

1 jeu daccessoires

1 notice

Accessoires disponibles et options:

Principes de base de la hydrostatique

HM 150.02 Étalonnage des appareils de mesure de pression

HM 150.05 Pression hydrostatique dans des liquides

HM 150.06 Stabilité des corps flottants

HM 150.39 Corps flottants pour HM 150.06

Principes de base de la hydrodynamique

HM 150.07 Théorème de Bernoulli

HM 150.08 Mesure des forces de jet

HM 150.09 Vidange horizontale d'un réservoir

HM 150.12 Vidange verticale d'un réservoir

HM 150.14 Formation de tourbillons

HM 150.18 Essai dOsborne Revnolds

Écoulement dans les conduites

HM 150.01 Pertes de charge linéaires en écoulement laminaire / turbulent

HM 150.11 Pertes de charge dans un système de conduites

HM 150.29 Perte d'énergie dans des éléments de tuyauterie

HM 150.13 Principes de base de la mesure de débit

Écoulement dans des canaux à surface libre

HM 150.03 Déversoirs à paroi mince pour HM 150

HM 150.21 Visualisation de lignes de courant dans un canal ouvert

Écoulement autour de corps

HM 150.10 Visualisation de lignes de courant

Machines à fluide

HM 150.04 Pompe centrifuge

HM 150.16 Montage en série et en parallèle de pompes

HM 150.19 Principe de fonctionnement d'une turbine Pelton

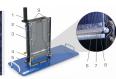
HM 150.20 Principe de fonctionnement d'une turbine Francis

Écoulement non stationnaire

HM 150.15 Bélier hydraulique - refoulement réalisé à laide de coups de bélier

Produits alternatifs

Date d'édition : 04.11.2025


Ref: EWTGUHM250.03

HM 250.03 Visualisation de lignes de courant (Réf. 070.25003)

Complément nécessaire: HM 250

Lécoulement laminaire en deux dimensions dans le canal du HM 250.03 donne une bonne approche de lécoulement des fluides idéaux, aussi appelé écoulement potentiel.

Les fines bulles de gaz, qui sont particulièrement bien portées par lécoulement en raison de leur petite taille, permettent de très bien visualiser les lignes de courant.

Le HM 250.03 contient une section dessai verticale dans laquelle des modèles sont positionnés pour provoquer des modifications de la coupe transversale.

La section dessai est traversée de bas en haut par un écoulement deau.

Les bulles dhydrogène produites par électrolyse montent avec lécoulement, permettant ainsi de visualiser les lignes de courant à laide de léclairage LED.

Les bulles dhydrogène sont produites par électrolyse sur une cathode constituée dun mince fil de platine.

Une plaque en acier inoxydable sert danode.

Les fines bulles qui se détachent du fil de platine sont portées par lécoulement, générant ainsi des trajectoires.

Les trajectoires suivent les lignes de courant de leau.

Des essais permettent détudier les concepts de ligne de courant, de trajectoire et de ligne démission, en se servant des différentes tailles des bulles.

Les trajectoires générées permettent de tirer des conclusions sur lécoulement.

Lorsque la vitesse découlement augmente, la distance entre les trajectoires diminue.

Le HM 250.03 se positionne facilement et en toute sécurité sur la surface de travail du module de base HM 250.

La technologie RFID est utilisée pour identifier automatiquement les accessoires, charger le logiciel GUNT approprié et effectuer la configuration automatique du système.

Linterface utilisateur intuitive guide les tests. Lalimentation en eau, lajustage du débit et la mesure du débit sont effectués via le module de base.

Le courant pour lélectrolyse peut également être ajusté par le module de base.

Contenu didactique / Essais

- visualisation découlements bi-dimensionnels
- apprentissage des concepts de ligne de courant, de trajectoire et de ligne démission
- évolution des lignes de courant à travers une section dessai avec modifications de la coupe transversale
- limites de lécoulement potentiel

frottement

vitesse découlement

- logiciel GUNT spécifiquement adapté aux accessoires utilisés

module dapprentissage avec principes théoriques de base

description de lappareil

préparation aux essais quidés

exécution de cet essai

affichage graphique de la section dessai avec les paramètres dessai

transfert de données via USB pour une utilisation externe polyvalente des valeurs mesurées et des captures décran, par exemple lévaluation dans Excel

différents niveaux dutilisateurs sélectionnables

Les grandes lignes

- les bulles dhydrogène générées par électrolyse visualisent des lignes découlement
- exécution intuitive des essais via lécran tactile (HMI)
- un routeur WLAN intégré pour lexploitation et le contrôle via un dispositif terminal et pour le "screen mirroring" sur GSDE s.a.r.l.

181 Rue Franz Liszt - F 73000 CHAMBERY

Date d'édition: 04.11.2025

10 terminaux maximum: PC, tablette, smartphone

- lidentification automatique des accessoires grâce à la technologie RFID

Les caracteristiques techniques

Canal découlement - profondeur: 10mm

- section dessai lxh: 150x290mm

Filtre nid dabeilles

matériau: polycarbonateforme: tubes Ø 3,5mm

2 modèles symétriques, positionnables

- chaque modèle: Lxlxh: 230x37,5x10mm, angle: 30°

Générateur de bulles - courant max.: 300mA

- cathode: matériau: fil de platine, Ø 0,2mm

anode

matériau: tôle dacier inoxydable, Lxlxh: 143,5x13,5x2mm

Eclairage LED

- température de couleur: 5500?7000K

- courant déclairage: 550lm/m

Plages de mesure

- plage de mesure indiquée débit: 0?15L/min

Dimensions et poids Lxlxh: 650x260x530mm Poids: env. 7,8kg

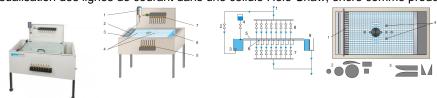
Liste de livraison

1 appareil dessai

1 jeu de modèles

1 documentation didactique

Accessoires


requis

HM 250 Principes de base de la

Ref: EWTGUHM152

HM 152 Écoulement laminaire bidimensionnel ou potentiel (Réf. 070.15200)

Visualisation des lignes de courant dans une cellule Hele-Shaw; encre comme produit de contraste

L'écoulement laminaire bidimensionnel de HM 152 donne une bonne approche de l'écoulement de fluides idéaux, ce que l'on appelle l'écoulement potentiel.

Tous les systèmes physiques décrits à l'aide de la formule de Laplace peuvent être démontrés avec l'écoulement potentiel.

Comme par exemple les flux de courant et flux thermiques ainsi que le flux magnétique.

L'élément central du banc d'essai HM 152 est une cellule de Hele-Shaw conventionnelle, munie de raccords d'eau supplémentaires pour les sources et les puits.

L'écoulement laminaire bidimensionnel est réalisé en faisant circuler de l'eau à faible vitesse dans une fente GSDE s.a.r.l.

HAMBURG

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 04.11.2025

étroite, située entre deux plaques en verre parallèles.

L'écoulement ainsi obtenu est exempt de tourbillons et peut être considéré comme un écoulement potentiel.

Les sources et les puits sont générés par le biais de huit raccords d'eau situés dans la plaque en verre inférieure.

L'injection de produit de contraste (encre) rend bien visibles les lignes de courant sur la plaque en verre tramée. Dans le cadre d'essais, on démontre l'écoulement autour de corps à l'aide de modèles placés dans l'écoulement parallèle.

Des modèles interchangeables tels qu'un cylindre, un profil d'aube directrice ou un contour de buse sont compris dans la liste de livraison.

Pour une modélisation de l'écoulement autour de corps sans modèles, il est possible de superposer au choix un écoulement parallèle, des sources, des puits et des dipôles.

Il est possible de cette manière de représenter la formation de demi-corps de Rankine.

Le débit d'eau et la quantité de produit de contraste injectée sont ajustés à l'aide de soupapes.

Les raccords d'eau sont également activés par des soupapes et peuvent être associés de la manière souhaitée.

Contenu didactique / Essais

- visualisation des lignes de courant dans différents cas écoulement autour de corps de résistance: cylindres, profil daube directrice, carré, rectangle écoulement traversant des modèles: contour de la buse, rétrécissement/élargissement discontinu décollement découlement, écoulement dévié à 90°
- modélisation de lécoulement autour de corps par superposition de lécoulement parallèle avec des sources ou des puits:

formation de demi-corps de Rankine démonstration dun dipôle

- analogie entre lécoulement potentiel et les autres systèmes physiques décrits à laide de la formule de Laplace

Les grandes lignes

- écoulement potentiel bi-dimensionnel, sans frottement
- visualisation des lignes de courant
- écoulement autour de différents modèles: corps de résistance et modifications de section
- modélisation de l'écoulement autour de corps par superposition de l'écoulement parallèle avec des sources ou des puits
- sources et puits seuls ou en association

Les caracteristiques techniques

2 plagues en verre: Lxl: 910x585mm

- écart entre les plaques: 5mm
- plaque en verre en bas munie de 8 raccords deau pour les sources/puits

Modèles

- -6 corps de résistance
- 2 changements de coupe transversale
- matériau: caoutchouc
- épaisseur 5mm

Injection du produit de contraste (encre)

- 19 buses

Capacité du récipient du produit de contraste: 200mL

Dimensions et poids Lxlxh: 1350x700x1380mm

Poids: env. 119kg

Date d'édition: 04.11.2025

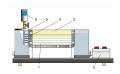
Nécessaire pour le fonctionnement raccord deau 300L/h, drain

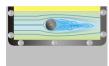
Liste de livraison

- 1 banc d'essai
- 1 jeu de modèles (corps de résistance, changements de coupe transversale)
- 1 encre (11)
- 1 documentation didactique

Produits alternatifs

HM132 - Visualisation verticale des champs d'écoulement


HM150.10 - Visualisation de lignes de courant


Ref: EWTGUHM153

HM 153 Visualisation de différents écoulements (Réf. 070.15300)

Différents modèles dans une section d'écoulement éclairée; écoulement laminaire et turbulent

Dans le domaine de la recherche et de lenseignement, les processus découlement sont souvent présentés sur des modèles simplifiés, par exemple des écoulements tubulaires, écoulements dans des canaux ouverts ou écoulements incidents sur des bâtiments.

Le banc dessai HM 153 permet de visualiser les écoulements autour de corps, les écoulements tubulaires et les phénomènes découlement apparaissant dans les canaux ouverts.

Différents modèles sont fixés dans la section découlement.

Un produit de contraste, de lencre, sert à représenter les lignes de courant en couleur.

Larrière de la section découlement est éclairé.

Elle est munie dune plaque avant transparente.

Lécoulement dans des canaux ouverts est réalisé à laide de deux déversoirs. La profondeur de leau daval est ajustée par un autre déversoir.

Lécoulement traversant est présenté sur trois modèles intervertibles avec changement de coupe transversale et sur le modèle faisceau tubulaire.

Les lignes de courant formées par lécoulement autour de corps sont présentées sur quatre corps de résistance.

Le banc dessai HM 153 contient un circuit deau fermé.

Alternativement, lappareil dessai peut aussi être opéré par le réseau du laboratoire.

Contenu didactique / Essais

lignes de courant formées lors de lécoulement autour de corps appliqué à différents corps de résistance solides

lignes de courant formées lors de lécoulement traversant observé sur différentes formes de modèles écoulement par des différents déversoirs

Les grandes lignes

visualisation des lignes de courant

section découlement éclairée

écoulement par des déversoirs

différents modèles: corps de résistance, déversoirs et changements de coupe transversale GSDE s.a.r.l.

Date d'édition : 04.11.2025

Les caracteristiques techniques Section découlement: env. 5L Produit de contraste: encre Injection du produit de contraste

- 5 buses

- Pompe
- débit de refoulement: 10L/min
- hauteur de refoulement: 5,7m

Déversoirs

- déversoir à seuil épais
- déversoir à paroi mince

Corps de résistance

- 2 coupes transversales cylindriques
- profil dail, symétrique
- profil dail, asymétrique

Changement de coupe transversale / écoulement traversant

- rétrécissement continu / élargissement brusque
- rétrécissement brusque / élargissement continu
- rétrécissement / élargissement brusque
- faisceau tubulaire

Dimensions et poids Lxlxh: 1000x310x680mm

Poids: env. 25kg

Necessaire au fonctionnement 230V, 50/60Hz Raccord d'eau, drain

Liste de livraison

1 appareil dessai

1 modèles

1 encre (1L)

1 documentation didactique

Accessoires disponibles et options WP300.09 - Chariot de laboratoire

Produits alternatifs

HM150.21 - Visualisation de lignes de courant dans un canal ouvert

Date d'édition : 04.11.2025

Ref: EWTGUHM132

HM 132 Visualisation verticale des champs d'écoulement (Réf. 070.13200)

Visualisation via des bulles d'hydrogène générées par électrolyse

Les petites bulles de gaz sont idéales pour visualiser les champs découlement.

Selon les analogies, de nombreux processus découlement ayant lieu dans lair peuvent être démontrés par des expériences réalisées dans leau.

Le banc dessai HM 132 comprend une section dessai verticale dans laquelle est placé un modèle interchangeable. La section dessai est traversée par un écoulement deau du bas vers le haut.

De petites bulles dhydrogène générées par électrolyse montent dans lécoulement, contournent le modèle et visualisent lécoulement.

Différents modèles sont disponibles: corps de résistance (p.ex. profils de voilure et cylindres) ou modifications de la coupe transversale.

La longueur de la section dessai permet dobtenir un long sillage, dans lequel se forme p.ex. une allée de tourbillons. Le fond noir et léclairage latéral permettent une observation optimale.

Le modèle peut être placé à deux endroit différents.

Un réservoir de stabilisation avec redresseur découlement se trouvant devant la section dessai génère un écoulement faible en turbulences.

Les essais sont réalisés à une vitesse découlement faible, afin que le décollement découlement et la formation des tourbillons soient bien visibles.

Une soupape permet dajuster la vitesse découlement.

Des bulles dhydrogène sont générées par électrolyse, sur une cathode constituée dun mince fil en platine.

Le bâti de la section dessai est utilisé comme anode.

Le fil en platine peut être monté à différentes positions.

Le courant cathodique, sa durée dimpulsion et de pause sont ajustables.

Le courant cathodique et la vitesse découlement sont affichés numériquement sur larmoire de commande.

En combinaison avec une caméra spéciale (p.ex. PCO Pixelfy) et un logiciel adapté (i.e. ImageJ), il est possible dévaluer des essais par traitement dimage (particle image velocimetry, particle tracking velocimetry).

Contenu didactique / Essais

- visualisation découlements bi-dimensionnels
- évolution des lignes de courant avec un écoulement contournant ou traversant des modèles
- décollement découlement
- formation de tourbillons, démonstration des tourbillons de Karman
- observation qualitative de la distribution de la vitesse pour lécoulement laminaire
- analogie avec lécoulement dair
- en combinaison avec une caméra spéciale (p.ex. PCO Pixelfy) et un logiciel adapté (i.e. ImageJ): évaluation des essais par traitement dimage (particle image velocimetry, particle tracking velocimetry)

Les grandes lignes

- visualisation des champs découlement et des lignes de courant autour de différents modèles à laide de bulles dhydrogène générées par électrolyse
- section d'essai éclairée verticalement
- études sur un écoulement laminaire

Les caracteristiques techniques

Pompe, trois étages

débit de refoulement max.: 9,7m^3^/hhauteur de refoulement max.: 12m

GSDE s.a.r.l.

Date d'édition : 04.11.2025

- puissance absorbée: 400W

Réservoir: env. 75L

Section dessai

- Lxh: 300x860mm, B=49mm

Générateur de petites bulles

- courant: 0...2A

- fil en platine comme cathode

Measuring ranges

vitesse d'écoulement: 0...13,3cm/s
courant cathodique: 0...2000mA
température de l'eau: 0...100°C

230V, 50Hz, 1 phase

Dimensions et poids Lxlxh: 1850x800x1990mm

Poids: env. 260kg

Liste de livraison

1 banc dessai

1 jeu de modèles

1 jeu daccessoires

1 système de rangement avec mousse de protection

1 documentation didactique

Produits alternatifs

HM133 - Visualisation des champs d'écoulement

HM152 - Écoulement potentiel

HM153 - Visualisation de différents écoulements