

Date d'édition : 05.12.2025

Ref: EWTGUET400

ET 400 Pompe à chaleur air/eau (évaporateur) avec charge, production eau froide (Réf. 061.40000)

Avec interface PC USB et logiciel inclus

Un circuit frigorifique est étudié avec le ET 400 sous une charge qui peut être paramétrée.

Le circuit frigorifique se compose d'un compresseur, d'un condenseur avec ventilateur, d'une soupape de détente thermostatique et d'un échangeur de chaleur à serpentin comme évaporateur.

Un circuit d'eau fait office de charge, se composant d'un réservoir avec un dispositif de chauffage et d'une pompe.

La température dans le réservoir est ajustée par un régulateur.

La fonction de ce circuit frigorifique est de produire de l'eau froide.

L'eau traverse alors la chemise d'eau de l'échangeur de chaleur à serpentin, cède de la chaleur à l'agent réfrigérant et est refroidit par ce biais.

Toutes les valeurs de mesure pertinentes sont prises en compte par un capteur.

Des affichages indiquent les valeurs de mesure sur chaque emplacement de mesure.

Il est alors possible de cette manière de classer les valeurs de mesure en fonction du processus.

La transmission simultanée des valeurs de mesure au logiciel d'acquisition des données permet l'évaluation aisée et la représentation des processus sous forme de diagramme log p,h.

Le logiciel affiche également les grandeurs caractéristiques les plus importantes du processus comme par exemple les rapports de pression de compression et les coefficients de performance.

Les composants disposés de manière claire facilitent la compréhension.

Contenu didactique / Essais

- montage et composants dune installation frigorifique compresseur condenseur soupape de détente thermostatique évaporateur pressostat
- représentation du cycle thermodynamique sous forme de diagramme log p,h
- détermination des grandeurs caractéristiques importantes coefficient de performance puissance frigorifique

travail de compression

- comportement en service sous charge

Les grandes lignes

- circuit frigorifique avec circuit d'eau comme charge
- charge de refroidissement définie par température régulée de l'eau
- affichage de toutes les valeurs pertinentes sur le lieu de la mesure

Les caracteristiques techniques

Date d'édition: 05.12.2025

Compresseur

puissance frigorifique: env. 479W à 7,2/54,4°C
puissance absorbée: 168W à 7,2/54,4°C

Évaporateur

- volume dagent réfrigérant: 0,4L

- volume deau: 0,8L

Condenseur

- surface de transfert: env. 1,25m2

- puissance absorbée du ventilateur: 4x 12W

Pompe

- débit de refoulement max.: 1,9m3/h - hauteur de refoulement max.: 1,4m

Réservoir

- volume: env. 4,5L

dispositif de chauffage: env. 450W
Agent réfrigérant: R513A, GWP: 631
volume de remplissage: 800g

- équivalent CO2: 0,5t

Plages de mesure

pression: 2x -1?15barpuissance: 0?750Wtempérature: 6x 0?100°C

- débit:

- eau 0,05?1,8L/min

- agent réfrigérant calculé 0?17kg/h

230V, 50Hz, 1 phase

Dimensions et poids

Lxlxh: 1620x790x1910mm

Poids: env. 192kg

Nécessaire pour le fonctionnement PC avec Windows recommandé

Liste de livraison

1 banc dessai, 1 CD avec logiciel GUNT + câble USB

1 documentation didactique

en option

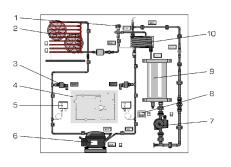
pour l'apprentissage à distance GU 100 Web Access Box avec

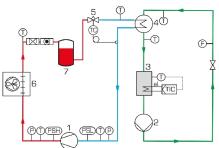
ET 400W Web Access Software

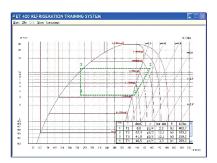
Produits alternatifs

ET102 - Banc d'essai pompe à chaleur

ET411C - Installation frigorifique à compression


Catégories / Arborescence


Techniques > Thermique > Génie frigorifique et climatique > Génie frigorifique - principes de la production du froid



Date d'édition : 05.12.2025

Date d'édition: 05.12.2025

Options

Ref: EWTGUGU100

GU 100 Web Access Box (Réf. 010.10000)

Accessoire pour appareils GUNT permettant un enseignement et un apprentissage pratiques à distance

La GU 100 est un accessoire pour une sélection dappareils GUNT.

La Web Access Box permet un enseignement pratique à distance - Remote Learning via le réseau propre au client. Via un navigateur web, les essais sont observés par transmission dimages en direct, les états de fonctionnement de lappareil dessai sont suivis, les valeurs mesurées sont visualisées graphiquement et facilement enregistrées localement pour une évaluation plus complète.

La Web Access Box fonctionne comme un serveur.

Il prend la fonction dacquisition des données, transmet les commandes de contrôle et fournit toutes les informations sur une interface logicielle.

Linterface logicielle est accessible à partir de tous les types de terminaux via un navigateur web, indépendamment du système.

Pour chaque appareil GUNT qui peut être étendu avec la Web Access Box, un logiciel spécifique est disponible: Web Access Box Software.

Le logiciel doit être acheté séparément pour chaque appareil.

La connexion de jusquà 10 terminaux à la Web Access Box est possible via WLAN, une connexion LAN directe ou en intégrant la Web Access Box dans le réseau propre au client.

Les terminaux connectés au réseau propre au client peuvent ainsi être utilisés pour lapprentissage à distance.

La Web Access Box est connectée au appareil GUNT sélectionné via USB. La caméra IP fournie est connectée à la Web Access Box via LAN.

Contenu didactique / Essais

- avec le logiciel Web Access Box Software:

Apprentissage à distance - Web Access Box comme serveur, accès indépendant du système via un navigateur web

affichage du schéma du processus

affichage des états de fonctionnement

affichage de toutes les valeurs mesurées actuelles

GSDE s.a.r.l. 181 Rue Franz Liszt - F 73000 CHAMBERY

Date d'édition: 05.12.2025

transfert des valeurs mesurées enregistrées en interne pour une évaluation plus complète observation en direct des essais affichage graphique des résultats des essais

Les grandes lignes

- observation, acquisition et évaluation des essais via un navigateur web
- transmission dimages en direct via une caméra IP
- Web Access Box comme serveur avec module WLAN intégré pour connecter les terminaux: PC, tablette, smartphone

Les caracteristiques techniques

- Web Access Box

système dexploitation: Microsoft Windows 10

mémoire vive: 4GB mémoire: 120GB interfaces

4x USB 2x LAN

1x HDMI

1x MiniDP

1x mini-série

module WLAN intégré

- Caméra IP

connexion avec la Web Access Box via LAN

230V, 50Hz, 1 phase

Dimensions et poids

Lxlxh: 112x84x34mm (Web Access Box)

Poids: env. 0,5kg

Liste de livraison 1 Web Access Box 1 caméra IP

Ref: EWTGUET400W

ET 400W Web Access Software (Réf. 061.40000W)

Le logiciel Web Access Software permet de connecter lappareil dessai à la Web Access Box GU 100.

Dune part, le logiciel Web Access assure la configuration nécessaire de la Web Access Box et prend en charge léchange de données entre la Web Access Box et lappareil dessai.

Dautre part, il constitue le lien avec lutilisateur via linterface logicielle dans le navigateur web.

Le logiciel Web Access Software est fourni via un support de données.

Linterface logicielle est accessible via un navigateur web, indépendamment du lieu et du système.

Linterface logicielle offre différents niveaux dutilisation pour le suivi des essais et lacquisition des données.

Par exemple, le schéma de processus et les états de fonctionnement de lappareil dessai sont présentés. GSDE s.a.r.l.

Date d'édition: 05.12.2025

Les essais peuvent être observés en temps réel grâce à la transmission dimages en direct de la caméra IP. Les valeurs mesurées actuelles sont affichées.

Les résultats des essais sont affichés graphiquement pour une évaluation plus approfondie. Les données de mesure peuvent être téléchargées via le logiciel et stockées localement.

Contenu didactique/essais

avec lappareil dessai: apprentissage à distance

interface logicielle avec

- schéma du processus
- états de fonctionnement
- valeurs mesurées actuelles
- transfert des valeurs mesurées
- transmission dimages en direct
- affichage graphique des résultats dessais

Les grandes lignes

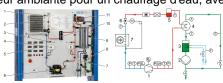
- configuration spécifique de la Web Access Box GU 100
- accès indépendant du système à linterface logicielle via un navigateur web

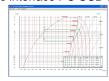
Caractéristiques techniques Support de données: carte SD Web Access Software indépendant du système connexion internet navigateur web format du fichier à télécharger: txt

Liste de livraison 1 Web Access Software

Accessoires requis GU 100 Web Access Box ET 220 Conversion de l'énergie dans une éolienne

Produits alternatifs


Date d'édition: 05.12.2025


Ref: EWTGUET102

ET 102 Pompe à chaleur air/eau (condenseur), production eau chaude avec charge (Réf. 061.10200)

Utilisation de la chaleur ambiante pour un chauffage d'eau, avec interface PC USB et logiciel inclus

Dans le cas de la pompe à chaleur air-eau ET 102, on utilise la chaleur ambiante pour réchauffer l'eau.

Le circuit de la pompe à chaleur se compose d'un compresseur, d'un condenseur avec ventilateur, d'une soupape de détente thermostatique et d'un échangeur de chaleur à serpentin en guise de condenseur.

Tous les composants sont disposés de manière visible sur le banc d'essai.

La vapeur d'agent réfrigérant condensée se condense dans le tube extérieur du condenseur et rend ainsi de la chaleur à l'eau contenue dans le tuyau intérieur.

L'agent réfrigérant liquide s'évapore à une pression basse dans l'évaporateur à tube à ailettes et absorbe ainsi de la chaleur provenant de l'air ambiant.

Le circuit d'eau chaude se compose d'un réservoir, d'une pompe et d'un condenseur comme dispositif de chauffage. Pour un fonctionnement continu, la chaleur perdue est évacuée par un raccord d'eau de refroidissement externe. Le débit d'eau de refroidissement est ajusté et mesuré par une soupape.

Toutes les valeurs de mesure pertinentes sont prises en compte par des capteurs et affichées.

La transmission simultanée des valeurs de mesure à un logiciel d'acquisition des données permet l'évaluation aisée et la représentation des processus sous forme de diagramme log p,h.

Le logiciel affiche également les grandeurs caractéristiques les plus importantes du processus comme par exemple le rapport de pression de compression et les coefficients de performance.

Contenu didactique / Essais

- structure et fonction d'une pompe à chaleur air-eau
- représentation du cycle thermodynamique sur le diagramme log p,h
- bilans énergétiques
- détermination des grandeurs caractéristiques importantes rapport de pression du compresseur coefficient de performance idéal
- coefficient de performance réel
- dépendance du coefficient de performance réel de la différence de température (air-eau)
- comportement en service sous charge

Les grandes lignes

- utilisation de la chaleur ambiante pour un chauffage deau
- affichage de toutes les valeurs pertinentes sur le lieu de la mesure
- enregistrement dynamique du débit massique de réfrigérant

Les caracteristiques techniques

Compresseur

- puissance frigorifique: 372W à 7,2/55°C
- puissance absorbée: 205W à 7,2/55°C

Échangeur de chaleur à serpentin (condenseur)

- contenu dagent réfrigérant: 0,55L
- contenu deau: 0,3L

Évaporateur à tubes à ailettes

- surface de transfert: env. 0,175m2

Pompe

- débit de refoulement max.: 1,9m3/h
- hauteur de refoulement max.: 1,4m

Date d'édition : 05.12.2025

Volume du réservoir deau chaude: env. 4,5L Agent réfrigérant: R513A, GWP: 631

- volume de remplissage: 1kg

- équivalent CO2: 0,6t

Plages de mesure

- pression: 2x -1?15bar

- température: 4x 0?100°C, 2x -100?100°C

puissance: 0?6000Wdébit: 0?108L/h (eau)

- débit: 10?160L/h (eau de refroidissement)

- débit: 0?17kg/h (agent réfrigérant)

230V, 50Hz

Dimensions et poids Lxlxh: 1630x800x1900mm

Poids: env. 195kg

Necessaire au fonctionnement raccord deau, drain

PC avec Windows recommandé

Liste de livraison

1 banc dessai

1 CD avec logiciel GUNT + câble USB

1 documentation didactique

en option

pour l'apprentissage à distance GU 100 Web Access Box avec

ET 102W Web Access Software

Produits alternatifs

ET101 - Circuit frigorifique à compression simple

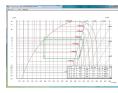
ET400 - Circuit frigorifique avec charge variable

ET405 - Pompe à chaleur pour mode de refroidissement et de chauffage

HL 320.01 Pompe à chaleur

Date d'édition: 05.12.2025

Ref: EWTGUET411C


ET 411C Installation frigorifique PAC avec 3 tubes capillaires, vanne détente (Réf.061.411C0)

Avec interface PC USB et logiciel inclus

La structure du ET 411C représente un circuit frigorifique typique, se composant d'un compresseur hermétique, d'un condenseur, d'un évaporateur et d'un élément d'expansion.

L'évaporateur et le condenseur se présentent sous la forme d'un échangeur de chaleur à double tube.

Les tubes sont partiellement transparents afin de mieux visualiser le processus de transition entre les phases lors de l'évaporation et de la condensation.

Trois longs tubes capillaires différents et une soupape de détente thermostatique peuvent être comparés comme éléments d'expansion.

Le banc d'essai est équipé d'un réservoir pour agent réfrigérant.

L'agent réfrigérant peut être ajouté ou retiré du circuit frigorifique à l'aide du réservoir.

Les effets provoqués par un sur-ou sous-remplissage peuvent ainsi être étudiés.

Le débit de l'agent réfrigérant est relevé sur un débitmètre.

La température et la pression dans le circuit frigorifique ainsi que la puissance électrique absorbée par le compresseur sont pris en compte par un capteur.

Les valeurs mesurées sont transmises vers un PC afin dy être évaluées à laide dun logiciel fourni.

La transmission des données au PC se fait par une interface USB.

Les modifications des paramètres du circuit frigorifique peuvent être observées sur le diagramme log p,h du logiciel.

Contenu didactique / Essais

- fonction et comportement en service des composants du circuit frigorifique
- fonctionnement avec la soupape de détente ou les tubes capillaires de différentes longueurs
- sous-remplissage ou sur-remplissage d'agent réfrigérant
- calculer le cycle thermodynamique sur le diagramme log p,h
- à partir du diagramme log p,h et en comparaison avec les valeurs mesurées calculer la puissance frigorifique calculer le coefficient de performance calculer le rendement du compresseur

Les grandes lignes

- installation frigorifique à compression avec évaporateur et condenseur transparents
- comparer différents éléments dexpansion
- influence du sous- et sur-remplissage de linstallation avec lagent réfrigérant
- enregistrement dynamique du débit massique de réfrigérant

Les caracteristiques techniques

Compresseur

- puissance absorbée: 288W à 7,2°/54,4°C
- puissance frigorifique: 463W à 7,2/54,4°C

Condenseur et évaporateur avec ventilateur

- débit volumétrique dair max., condenseur: 300m3/h
- débit volumétrique dair max., évaporateur: 180m3/h

Tubes capillaires: 1,5m, 3m, 6m Réservoir pour agent réfrigérant: 1,3L

Agent réfrigérant

- R513A

Date d'édition : 05.12.2025

- GWP: 631

- volume de remplissage: 2,5kg

- équivalent CO2: 1,6t

Plages de mesure

- pression: -1?9bar / -1?24bar

- température: 4x -40?150°C, 1x -100?100°C

débit: 2?19kg/h (agent réfrigérant)puissance absorbée: 0?1000W

230V, 50Hz, 1 phase

Dimensions et poids Lxlxh: 1740x800x1780mm Poids: env. 190kg

Nécessaire pour le fonctionnement PC avec Windows recommandé

Liste de livraison 1 banc dessai 1 logiciel GUNT + câble USB 1 documentation didactique

Accessoires en option pour l'apprentissage à distance GU 100 Web Access Box avec

ET 411CW Web Access Software

Produits alternatifs

ET350 - Changements d'état dans un circuit frigorifique

ET352 - Compresseur à éjection de vapeur en génie frigorifique

ET400 - Circuit frigorifique avec charge variable